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1. Introduction and Summary

This report, requested by John Marriner, presents the current status of our understanding of two design strategies and associated cost estimates and shutdown impacts for a low-( interaction region insertion at the Tevatron C0 station for the proposed BTeV experiment.  The BTeV experiment has requested a (peak, beginning of store) Luminosity of 2 x 1032 cm-2 sec-1.  

One design (Plan #1) proposes to re-use surplus components from either the CDF IR or D0 IR after either one or both of these experiments has been completed.  The space constraint of a longer BTeV experiment requires the use of doublet, rather than triplet, final focus optics, and limits the anticipated Luminosity at BTeV to ~ 1.6 x 1032 cm-2  sec-1 (assuming that the Tevatron is capable of delivering 5 x 1032 cm-2 sec-1 to CDF/D0, i.e. ~ BTeV could get up to 1/3 of the CDF/D0 luminosity).  Plan #1 could allow for alternating stores between BTeV and the remaining CDF/D0 experiment.


The other design (Plan #2, which actually was conceived before, but named after Plan #1) would build entirely new IR components for C0 which would allow BTeV to have useful luminosity scheduled for delivery during the period when both CDF and D0 are installed and in a data-taking configuration.  This could be at low luminosity for testing/commissioning simultaneously with CDF/D0 data, or periods of moderate luminosity running at the end of a CDF/D0 store.  High luminosity at ~ 70% of the CDF/D0 luminosity could be delivered to BTeV with CDF and D0 both in stand-by mode.


Of course, there is a substantial financial difference between the earlier, more flexible, and higher luminosity of Plan #2 relative to Plan #1.  Plan #1 would require a major time period for the fabrication of (modified LHC design) quadrupole magnets.  However, another major consideration will be the earliest time at which luminosity could be delivered to BTeV, relative to the need for shutdown time to install the IR for BTeV, either during the main CDF/D0 data run or after one of these experiments is completed.


Two related components that cannot be lost in the financial and scheduling considerations are the need to complete the outfitting of all utilities for the C0 Assembly Building shell and the reconfiguration from the fixed-target abort to a straight section at C0 (for BTeV component testing).  Including these activities, the cost estimates, in year 2003 dollars, are ~ $ 10 M for C0 I.R. Plan #1 and ~ $ 37 M for C0 I.R. Plan #2.


There are still some outstanding beam optics design and many optimization issues. 

2.  Methodology 


The general methodology of this report will be to reference and include as appendices many related studies, spreadsheets, and other documentation, while briefly summarizing their content.  All of the references can be linked from the home page





http://home.fnal.gov/~peterg/c0_design
or they can be directly accessed from 


http://www-ap.fnal.gov/~peterg/btev/FILENAME.

For example, this report is 


http://www-ap.fnal.gov/~peterg/btev/c0ir_2002.doc

Short sections will be included within the body of this report under the bylines of the individual contributors.

3.    Common Optics/Beam Design Questions - either Plan #1 or Plan #2


Both of the following considerations must be addressed regardless whether Plan #1 or Plan #2 is ultimately chosen.

a.
Reconstituting the Straight Section at C0


Currently, the high intensity (Fixed Target) proton abort resides in the C0 straight section (Michael Harrison, The Tevatron Abort System, UPC-153, November 1981).  This consists of three Lambertson magnets, two C-magnets, and two half-length Tevatron dipoles replacing two full-length Tevatron dipoles.  In order to optimize Tevatron apertures, the three Lambertson magnets are scheduled to be replaced by four Main Injector dipoles in January, 2003.  This configuration will have to be modified into a standard straight section replacing these elements by the conventional two full dipole configuration, whether either Plan #1 or Plan #2 is chosen.  BTeV would request that this change be done as early as possible so that free space would be made available within the C0 Experimental Hall to allow installation of components of the experiment for testing in the collider environment.


This configuration change would reduce the circumference of the Tevatron by 1.6 mm, in the right direction of reducing the 36.6 mm mis-match between the Tevatron and Main Injector circumferences.  Plan #2 (see discussion below) would reduce the Tevatron circumference by an additional 11 mm.  Plan #1 does not further reduce this mis-match.


The additional costs and shutdown impact of reconstitution of the C0 straight section (besides those for implementing the C0 IR) had been estimated for the Fermilab PAC in June, 2000.

b.
BTeV Analysis Magnet SM3 and Compensating B2 Dipoles

BTeV is based on a transverse field dipole analyzing magnet placed symmetrically on the C0 IR point.  It is chosen to use the SM3 magnet from the E-605 series of experiments in M-East with additional pole shims to increase the field.  The effect of the field of this magnet on the Tevatron beams will have to be compensated somehow.  In order to decouple this compensation from the quadrupole tune, it is chosen to have the two compensating dipoles located in-board of the closest quads (within the +- 40 feet of the C0 Experimental Hall).  It is anticipated that these compensating dipoles will be 10 foot long B2 magnets.  This leads to the following observations and questions concerning the SM3/B2 magnets that need to be addressed:

1. BTeV has chosen to have their analysis magnet and compensating magnets bend vertically, producing a slightly non-planar Tevatron.  This is only a few millimeters maximum excursion out of the horizontal plane.  If this is a problem, a horizontal bend could be accommodated by BTeV at the cost of redesign of mechanical aspects of the vertex detector and vacuum chamber, tracking chambers, cerenkov counter, and EM calorimeter.

2. Is the < 2 inch total aperture in the non-bend plane for the B2 compensating dipoles sufficient?

3. Are any field non-uniformities or aberrations, due to either geometry or saturation significant?  Are they correctable with the existing and planned correction elements for the Tevatron?

c.
Other (earlier) Test Beam Configurations for BTeV


After the fixed target proton abort has been removed and a conventional straight section established at C0 (as in item 2.a. above) to allow space for installation of BTeV equipment, there are two options for providing some luminosity for testing and commissioning purposes for BTeV before a low-β insertion is constructed.  

The first option could be an internal wire target placed in the proton beam halo as done for the HERA-B experiment at DESY.  A description of the attainable event rates has been studied (John Marriner, Operation of the C0 Experimental Region with a fixed (internal) target, April 14, 1997, revised November 11, 2002).   

(www-ap.fnal.gov/~peterg/btev/mariner_wire_11nov02.doc).

The second option is to simply turn off the electrostatic separators and allow the beams to collide at C0.   This was done for two previous collider experiments at C0 (E-735, Gutay, Search for Deconfined Quark-Gluon Plasma, and T-864, Bjorken and Taylor, MiniMax – Test of a Maximum Acceptance Detector) either at the end of a CDF/D0 (for testing purposes) or for dedicated E-735 or T-864 running.  This provided low luminosities of ~ 1029 cm-2 sec-1.  While this worked for 6x6 bunch operation of the Tevatron collider, this approach may be problematic for 36x36 bunch or 132 nsec bunch spacing operations, unless a separator scheme can be developed which allows collisions at C0 but not at the other parasitic crossings.

4.  Plan #1 – reuse IR components from B0 or D0 

· minimize new components 

–   but only after CDF and/or D-Zero is finished

a.  Background 

Previously, fabrication and installation of new IR components to allow BTeV to operate simultaneously with CDF and D0 (Plan #2) had been considered, estimated, presented to the Fermilab PAC, and was part of the basis of the Stage 1 Approval for BTeV in the Summer of 2000.  However, with the recommendations, in January, 2002, of the HEPAP Subpanel on Long Range Planning for U.S. High-Energy Physics, the Fermilab Directorate requested, in preparation for a P5 review, a less costly IR approach, where, after CDF and/or D-Zero completed data taking, those IR components could be repositioned at C0 for BTeV.  Preliminary and somewhat incomplete designs and rough estimates of the relative cost savings were presented by Peter H. Garbincius to the Fermilab PAC in April, 2002. 

(www-ap.fnal.gov/~peterg/btev/BTeV_PAC_12april02.ppt).

b. Initial Considerations (1996)

In 1996, Fermilab Director John Peoples commissioned two studies, one on a simple, low luminosity (β* = 3.5 meters, compared to 0.35 meters for CDF/D0) IR for C0, and the second on experiments that could be accomplished at this luminosity at C0.  A preliminary IR design was presented (F. Ostiguy and P.H. Garbincius, Interaction Region at C0:  Preliminary Lattice Studies. May 30, 1996, www-ap.fnal.gov/~peterg/btev/prelim_lattice_studies.pdf).  A discussion group of interested experimenters was formed and a report presented (J.A. Appel and P.H. Garbincius, Report on the C-Zero Mini-Collider Region Discussion Group, June 1, 1996, www-ap.fnal.gov/~peterg/c0_report.html).  These were presented at the Spring 1996 PAC (PHG), Fermilab Users Meeting in June 1996 (JAA) and at the Summer 1996 PAC (PHG).  The preliminary designs and cost estimates lead to the approval and execution of an AIP project to construct the Experimental Hall at C0 during the shutdown for the tie-in of the Fermilab Main Injector to the Tevatron.

These earliest design parameters specified a factor of 10 less luminosity than was available at CDF and D0, and an experimental hall of only +- 30 feet length relative to the C0 interaction point.  The low-β quadrupole magents would start at +- 37.5 feet from the I.P., compared to +- 25 feet for CDF/D0), so space had to be shortened for the final focusing quadrupoles, leading to designs using doublet, rather than triplet optics.


Since those early studies, the parameters of BTeV have increased to requiring a luminosity of 2 x 1032 cm-2 sec-1 (40% of the maximum desired for CDF/D0) and additional longitudinal space (an experimental hall of +- 40 feet was constructed).


An updated doublet optics IR design, but still missing design of separated orbits,  and an updated cost estimates were presented at the Spring 2002 PAC (PHG).
c. Updated Doublet Optics IR Design

John Johnstone has presented a design study,   A Doublet C0 IR Solution Using Existing Magnets, FERMILAB-TM-2181, August 1, 2002, 

www-ap.fnal.gov/~peterg/btev/johnstone_doublet_1aug02.pdf

along with a spreadsheet of the magnet layout positions. 

www-ap.fnal.gov/~peterg/btev/doublet_survey_23july02.doc  

This design produces separated orbits and a finite crossing angle at the C0 IR for the 132 nsec bunch separation planned for Run IIb.  It produces a β* = 1.5 m at C0 and a βmax = 920 m within the doublet quadrupole magnets.  The anticipated luminosity at C0 would be 1.6 x 1032 cm-2 sec-1 (assuming that the Tevatron can actually provide 5 x 1032 cm-2 sec-1 to CDF and D0 during Run IIb).   BTeV would have collisions, while CDF/D0 would be in a fixed-target-like, Collins straight section configuration.  

John has also considered the orbit separation solution for BTeV/C0 in standby mode with doublet optics and high luminosity collisions at CDF/D0 in  A Doublet C0 IR Solution Using Existing Magnets – The Sequel, October 17, 2001 (www-ap.fnal.gov/~peterg/btev/johnstone_doublet2_17oct02.pdf).   Note that these C0 Plan #1 optics configurations by John would have electrostatic separators in different places than currently installed or envisioned for future 132 nsec bunch separation operation for CDF/D0.  No additional separators would be required, only repositioning of then existing separators.  See ES Separator table below.
With the insertion of reversing switches, the configuration change at CDF/D0 could be accomplished over a few minutes, allowing interchanging of collisions at BTeV and CDF/D0 on alternating stores, if desired. A minor complication for a doublet configuration within the space constraints is that one of the three electrostatic separators on each side of the C0 IR will have to be rotated 45-degrees, producing a possible coupling of the horizontal and vertical optics for the Tevatron.  Logistically, this would require either modification of the high-voltage feed-through on the ES separators moved from CDF/D0 (a small deal) or fabrication of new separators for this orientation. (Neither the reversing switches nor the separator feed-through modifications has yet been included in the cost impact for Plan #1.)

John Johnstone stresses that this doublet optics design study is still preliminary and is in need of further refinement and optimization before implementation.

d.  
Impacts of Plan #1

i.  Tevatron Components


The Tevatron components to be switched between CDF/D0 and C0 are listed in the following table.  It is to be noted that in the Plan #1 design, there will be no repositioning of the Tevatron dipoles around C0.  This greatly simplifies the swap since many of the interchanged elements will have exactly the same net slot lengths.  Those that do not, Q2, Q4, and the electrostatic separators, are inboard of the dipoles.  Note also that the existing Q1’s and Q3’s (longer) at CDF/D0 would not be used at C0. The existing conventional spools and corrector/trim packages at B43, B44, C14, C16, and C17 will be interchanged with the strong corrector/trim/spool packages with 59 T/m quadrupole trims at 1000 A from CDF/D0.   Lead box/spools are moved to B47, B48, C12, and C13 to provide power to the adjacent low β quadrupoles, independent of the Tevatron bus.  In addition to moving these accelerator elements, a corresponding number of power supplies, bus work, instrumentation, and controls must also be interchanged.  Since this plan would simply interchange the location of existing cryogenic magnets, there would be no net increase in cryogenic heat load.  There should be very little cryogenic modifications necessary, except for the plumbing and hookup of new focusing doublets at C0. 
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Schematic of Plan #1 C0 I.R. Design (symmetric about C0 I.P.).  The upper beam line depicts the existing configuration (with the fixed target abort elements replaced).  The lower beam line shows the plan using recycled elements from the CDF or D0 I.R.
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	     22
	     22
	     27
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	   21 (+6)

	
	
	
	
	
	

	# P.S.
	     12
	     12
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	     14
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Tevatron Components to be Interchanged CDF/D0 ( C0 for Plan #1

Tevatron
name at




new name


Station
CDF/D0
existing element type

at C0

Comments

B43

Q0u

strong corrector spool

( Q7u


B44

Q9u

strong corrector spool

( Q6u



B45

no change
trim, feed can


no change 

B46

Q7u

strong corrector spool

( Q5u

B47

Q6u, Q6Tu
low ( quad and lead/spool
( Q4u



B48

Q5u

low ( quad and lead/spool
(Q3u



B49

“Q1” not used

low ( quad

not used
84” quad &






“Collins straight section” quads
99” quad











move C0 =>











CDF/D0



ES Separators
   and cryo bypass

ES Separators, tilt one 45o
Q2-Q3-Q4
low ( quads (3), lead box,

   and turnaround box

=> Q2-Q1 
use only 2

C0 IP

     



     

C0 IP

     



Q4-Q3-Q2
low ( quads (3), lead box,
=> Q1-Q2
use only 2





   and turnaround box



ES Separators
   and cryo bypass

ES Separators, tilt one 45o
C11

“Q1” not used

low ( quad

not used
99” quad &





“Collins straight section” quads

84” quad











move C0 =>











CDF/D0


C12

Q5d

low ( quad and lead/spool
( Q3d



C13

Q6d, Q6Td
low ( quad and lead/spool
( Q4d



C14

Q7d

strong corrector spool

( Q5d



C15

no change
trim, feed can


no change


C16

Q9d

strong corrector spool

( Q6d


C17

Q0d

strong corrector spool

( Q7d


ii.
New Components
There are very few new components required for the C0 IR Plan #1.  This basically re-arranges existing components, the costs are dominated by manpower (both Fermilab and contract trades, such as rigging, ironworkers, millwrights, pipe fitters, and electricians).  

iii. Cost Estimate

A preliminary set of cost estimates was produced in August 2002, not including G&A, contingency, and escalation, included:

Category


Estimate
Comments

Cryogenics


$    468 K
includes mainly Fermilab and Contract labor
 

Power Installation

$ 1,238 K
incl.  purchases, contractor & Fermilab labor

Mechanical Installation
$    330 K
includes Fermilab and Contract labor


Total

$ 2,036 K
5.   Plan #2 – build new IR components and install at C0 during the

  CDF/D0 run
a.  Current Design and Review Recommendations


John Johnstone has provided a description of his current design to build and install new (modified) LHC quadrupole magnets and electrostatic separators to provide high luminosity for BTeV, up to 3.5 x 1032 cm-2 sec-1 at (* = 0.5 meters (again, assuming CDF/D0 can be delivered  ~5 x 1032 cm-2 sec-1) with CDF/D0 in standby mode, and simultaneous operation of BTeV/C0 at lower luminosity (~1 x 1032 cm-2 sec-1) for testing and commissioning during CDF/D0 high luminosity running.  The maximum BTeV/C0 luminosity is not limited by the strength of the focusing optics (a (* of  < 0.35 meter could be attained), but rather by the (max in the smaller LHC triplet quadrupoles (63 mm aperture compared to 70 mm for Tevatron quadrupoles and 61 mm for Tevatron dipoles).

John A. Johnstone, C0 Low-β Optics, FERMILAB-TM-2139, December 27, 2000.
www-ap.fnal.gov/~peterg/btev/johnstone_27dec00.pdf 

The accelerator physics of this design has been reviewed in February 2001 by a team from Fermilab and Brookhaven National Laboratory. 

www-ap.fnal.gov/~peterg/btev/c0_optics_review.pdf 

While the review team did not discover any definite serious problems with this design, they recommended a series of further studies.  These included lowering the (* at C0 to less than 0.5 meters to provide adequate luminosity for BTeV in the event that the Tevatron intensities and emittances do not attain their design values, studying whether sufficient correctors exist or are planned to compensate for gradient errors or alignment errors, shortening the interconnects between LHC-type quadrupoles, assessing the possibility of trim power supplies on the inner triplet, and studying linear decoupling with skew quadrupole correctors, optics and helix at injection, beam-beam induced orbit shifts, tune footprint, and dynamic aperture, the possible need for nonlinear correctors to correct field quality of the insertion quadrupoles, and whether nonlinear chromaticity correction is required.


In addition, Peter Bagley, another member of the review team, posed an additional series of design and operational questions for the proposed low (* insertion.

www-ap.fnal.gov/~peterg/btev/bagley_1march01.txt


Some of these suggested studies were undertaken by Sho Ohnuma during the Summer of 2002: 


www-ap.fnal.gov/~peterg/btev/ohnuma02_quad_misalignments_corrections


www-ap.fnal.gov/~peterg/btev/ohnuma02_chromaticity


www-ap.fnal.gov/~peterg/btev/ohnuma02_lowbeta_multipoles


www-ap.fnal.gov/~peterg/btev/ohnuma02_new_lattice_geometry


www-ap.fnal.gov/~peterg/btev/ohnuma02_dynamic_aperture_tracking

b.  Another Optics/Operations Consideration: 


There is currently a mis-match in the circumferences of the Main Injector and Tevatron rings, with the Tevatron circumference being approximately 35 mm too long.  Going to the normal straight section configuration (from the Fixed Target Abort configuration) reduces the Tevatron orbit length by 1.6 mm.  Additionally, repositioning the dipoles as John Johnstone suggests for C0 IR Plan #2 would reduce the orbit length by an additional 11.0 mm, giving a total reduction of 12.6 mm, in the direction of minimizing the mismatch. Preliminary discussion with Ralph Pasquinelli (BD/RF&I) indicated that this is a small enough change (12.6 mm/6.28 km ~ 2 ppm in circumference) that the Tevatron RF would be expected to easily be able to handle the related frequency shift. 


www-ap.fnal.gov/~peterg/btev/ohnuma02_new_lattice_geometry

c.  Basic Logistical Concepts       
     www-ap.fnal.gov/~peterg/btev/c0ir_changes.xls


The John Johnstone Plan #2 design requires the construction of 4 different lengths of new LHC-technology quadrupole magnets, Electrostatic Separators, tune matching quadrupoles with appropriate trim/corrector packagers, cryogenic spools, bypasses, lead boxes, and their installation and support (cryogenics, power supplies, bus-work, etc.) systems (see table below).  The currently unused Q1 quadrupoles (total of 4) from CDF and D0 are employed in this design. The two Q1’s at D0 have already been removed and replaced with warm bypasses.  The two Q1’s at CDF would have to be replaced with either new warm bypasses or new cryo spools. (Are the adjacent lead boxes useful for the John Johnstone’s Plan #1? Maybe only 2 of 4.  See discussion of trims.) To indicate the extent of the new fabrication and installation, the new components needed are outlined in the next table.  The changes extend from stations B38 through C17.  Between B38 and B44 (inclusive) and C16 and C17 (inclusive), the FODO quads and the Tevatron dipoles remain in place, while only the 72” spool sections are replaced.  The cryo feed cans at B45 and C15 remain in their current positions.  Otherwise, all of the elements from B45 through C15 are either replaced or repositioned.  
[image: image2.jpg]John Johnstone's Plan £ L.R. Design — B38 to C17
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In the table of elements needed to be fabricated (below), the trim packages are the same

as the existing DSQ-I and DSQ-II corrector packages, namely at 50 Amps at 1” radius, 


Normal Dipole and Skew dipole: 
142 kg-inches (integrated) => 0.47 Tesla


Sextupole: 



50 kg-inches


Normal Quad and Skew Quad:  
63 kg-inches => 8.3 T/m


Sho Ohnuma has reviewed the corrector placements and the existing series of Tevatron trim mangets (with horizontal and vertical dipole, quadrupole, skew quadrupole, sexutpole, and octupole correctors).  The current spares inventory and Tevatron installation has not been reviewed to determine whether any of these would be available without the need for fabrication.



www-ap.fnal.gov/~peterg/btev/ohnuma02_trims_plan2

d.  Elements needed to be Fabricated for John Johnstones’s Plan #2 Design

plus the appropriate number of spare, power supplies, quench protection, etc.!

6 
strong quad trims


72” slot length, 25” magnetic length, 40 T/m 

  QB, Q0, Q9u, Q8u, Q8d, Q9d
w/correctors – see below 4*TSM, 2*TSN

2 
short w/dipole & sextupole trims
44.175” slot length with 4,800 A lead pairs


  Q7u, Q7d (HD,TSF,HBPM/VD,TSD,VBPM)    for adjacent quads– see below

6
long w/dipole-sextupole-BPM trims
56.175” slot length, for adjacent quads


  Q6u, Q6d




2 with 4,800 A lead pairs


  Q5u, Q4u, Q4d, Q4u



4 with 10,000 A lead pairs


  3 each (HD,TSF,HBPM/VD,TSD,VBPM)
see discussion of trims - below

2
BPM spools



17” slot length with BPMs

2
cryogenic spools


one each 130.75 inches and 60.625 inches

2
cold bypasses



372.507” slot length, 343.757” warm gap








polarity flip on one of these

2 
power feed cans


29” slot length with lead pairs 







     either one 10,000 A + trim quad leads







     or two 10,000 A lead







     depends on configuration of triplet

2 
triplet spools



56.175 inch slot length – transport 10 KA

contains HCORR, VCORR, HBPM,      VBPM, and 8” trim quad @ 140 T/m

2
turn around boxes


15.75 inches with BPMs

4 
LHC Quads



138.6 inch slot, 96.5 inch magnetic length

2
LHC Quads



215.6 inch slot, 173.5 inch magnetic length

2
LHC Quads – reduced diameter?
96.1 inch slot, 54 inch magnetic length

2
LHC Quads – reduced diameter?
117.1 inch slot, 75 inch magnetic length

6
Electrostatic Separators

3 each, Horizontal and Vertical

4
existing Q1 quads from CDF and D0

2
cryo spools or warm bypasses to replace two Q1 quads to be removed from CDF

e.  Discussion on Trim/Corrector Specifications

i.  Strong Quad “Trims” – actually the tune-matching quadrupoles for the low-β insertion

These would have identical specs as the TSM/TSN series of spool pieces with a strong quad corrector package (S5, 58 T/m at 1 KA, 25” magnetic length) and a DSQ-I/DSQ-II trim package with dipole/skew dipole, sextupole, and quad correctors.  The 58 T/m performance of the TSM/TSJ surpasses John’s maximum requirement of 40 T/m.


The strong corrector quads (aka Bartelson quads in the Beams Division) in the TSM/TSN package are built with a 5-in-1 conductor cable running at 1000 Amps.  These parameters are similar to the high inductance (3 Henry, 100 A) quadrupoles specified for the TESLA Linacs.  The TESLA TDR quadrupole specification is 90 mm bore x 0.52 m (20.47” magnetic length, 0.666 m cold mass length) x 60 T/m at 2 oK.  (Note that the LHC has different plans for their trim quads.)  TESLA prototypes are to be developed by CIEMAT in Madrid by 2004.  The Ciemat design report (L. Garcia-Tabares, et al., Design and Fabrication Study on the TESLA 500 Superconducting Magnet Package, Informes Tecnicos Ciemat 953, Febrero, 2001) indicates that these could be a financially attractive alternative to in-house fabrication of the cold masses for these elements.  


ii.  Other, more standard, existing Trim Packages

The integrated multipole (2P, 6P, 4P) fields at 1” at 50 Amps are approximately (lots of variation) 142, 50, and 63 kg-in.  These would correspond to 0.36 T-m, 197 (T/m2)-m, and 6.3 (T/m)-m respectively, assuming 27” magnetic length for the 6P and 4P elements.  John’s specification (31may02) of 0.5 T-m for the dipoles trim and 225 (T/m2)-m for the sextupole trims are not satisfied by these existing components.  Note that the original design specifications for trims were 2P: 175 kg-in, 4P: 61 kg-in, 6P: 50 kg-in, 8P: 30 kg-in in the Design Report, 1981, Superconducting Accelerator book, page 44.  Jerry Annala (20june02) says because of installed trim leads, it is not wise to push much beyond 50 Amps.  However, this lead limitation could be rectified for new components if their quench limit would be higher.

iii.  8” Long Quadrupole Trims in the Triplet Spools


John Johnstone has considered only a. of the following three options for powering the triplet Q1-Q2-Q3 configuration:

a. run all three magnets Q1-Q2-Q3 in series and add a small 8” x 140 T/m trim

quadrupole QTT in the triplet spool.  This would require a single 10 KA lead pair for Q1-Q2-Q3 at each triplet, plus a lead pair (as yet unspecified) for QTT (assume 5 KA for 140 T/m as in Tevatron low-( quads.  The design of such a short trim might be complicated.  Could this QTT be made longer and less strong?

b.  run all three magnets Q1-Q2-Q3 in series (10 KA lead pair) and add either

trim power supply for Q2 (< 2% or 200 A lead pair) or an active shunt for 

Q1-Q3 (again, 2% or 200 A lead pair).  This would require design and

fabrication of these power elements, with special care for operating stability and quench detection and protection.

c. run Q1-Q3 in series, and run a separate supply for Q2.  This would require two 10 KA lead pairs plus two sets of water-cooled bus for each triplet.  This may be a substantial load on the cryogenic plant capacity.

Optimization in terms of cost, fabrication complexity (spares), and cryogenic heat load still needs to be done before choosing one of these options.

iv.  “Q1” moves from CDF/D0 – can the TSP spools also move?


The four “Q1” quadrupoles from CDF/D0 could, in principle, bring their corresponding adjacent TSP spools with them (56.15” length, identical? to John’s model for the two Q6’s, but not for the two Q7’s at 44.175” slot length, with one 5 KA power lead pair plus a DDQ correction package: HD, VD, SQ).   Moreover, John assumed a trim configuration identical to that of the TSJ/TSK (HD,TSF,HBPM/VD,TSD,VBPM) which is currently installed at the CDF/D0 “Q5” positions.  So, there remains the question whether this specification should be changed to allow use of the existing TSP spools.

Power Lead Requirements (main loads, not including 50 A trims)

Number 
Current
Locations


     Comments
6

1 KA

B38, B42, B43, B44, C16, C17    assumes Bartelson-like

4

5 KA

B45, B46, C14, C15

      reuse Q1’s from CDF/D0

4

10 KA

B47, B48, C12, C13

      new LHC Quads

option a.
2*10 KA
Q1-Q2-Q3 (B49 and C11)




2* 5 KA
QTT (B49 and C11)

      assumption for QTT

or

option b.
2*10 KA
Q1-Q2-Q3 (B49 and C11)



2*200 A
trim/shunt for Q2

      quench protection?

or

option c.
4*10 KA
Q1-Q3 and Q2 (B49 and C11)      brute force, $$$










larger cryo load

v.  Trim PS or shunt 

Howie Pfeffer (3june02) discussed what is currently done in CDF/D0 insertions.  They presently run CDF/D0 Q3(-124.1349 T/m per 0.9 TeV) and Q2/Q4 (+125.8548 T/m per 0.9 TeV) in series (4800 A) in series with an extra PS supplying 50 A (actually this difference looks like 1.4% * 4800A *0.98 = 65 A). This is do-able, but it needs lots of work and care to make sure the quench detection and protection are both stable and safe.  In earlier runs Q6 and Q6T were also handled with a trim power supply, but that required 200 A (out of 4800) so this was a little bit more unwieldy.  Now Q6us and Q6ds are run in series and Q6Tus and Q6Tds are separate trim magnets in series +- with a single power supply.  Howie Pfeffer and Dan Wolff were very strongly in favor of John Johnstone’s scheme of having Q1-Q2-Q3 in series on a single supply and a small trim quad (few %) on its own separate supply circuit.  This gives no complication due to interaction with quench detection or protection, however, this requires fabrication of another still type of LHC quadrupole magnet, one that is extremely short.

f.  Spares Issues for Plan #2

Not only is there a large number of components to be fabricated, this total consists of a large number of slightly different series, each series with only a few numbers.  Considering the need for at least one spare per type of element, the relative ratio of spares to installed elements is undesirably large, leading to increased fabrication costs and time scale.  For example, there is need for 2 (+ 1 spare) 96.5” LHC quads, 4 (+ 1 spare) 173.5” LHC quads, 2 (+1 spare) 54” LHC quads, 2 (+1 spare) 75” LHC quads, and possibly 2 (+ 1 spare) 8” LHC quads, for a total of 17 quads over 5 different lengths.

g.  Technical Question – Will the LHC Quadrupoles Work in this Application?
There are two questions regarding using LHC quadrupole technology for the C0 IR Plan #2 that must be addressed:  operation at 4.5o K and overall cryostat size.

The existing Tevatron cryogenics is based on a forced flow single phase/two-phase liquid Helium system rather than the 1.9o K superfluid Helium system of the LHC.

John Johnstone’s Plan #2 specification is for 170 Tesla/meter gradient, which would correspond to a current of 9,560 Amperes.  The first full scale Fermilab fabricated LHC quadrupole exceeded the 9,560 Ampers at 4.5o K on its third training quench as depicted in the quench histories below.  This was the only LHC quadrupole tested at 4.5o K.  However, subsequent full quadrupoles had one reach 229 T/m (first quench) and 233 T/m without quenching at 1.9o K.

i.  Quench Performance of LHC Quads under Tevatron Cryo Conditions

 kerby_quench.xls from    http://tdserver1.fnal.gov/kerby    (24may02)

note that the specified gradient of 170 T/m corresponds to =>  9,560 A
DOE Review Introductory Talk, 14 May 01, page 6
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ii.  Overall Transverse Size of LHC Quadrupoles and Cryostats


The standard LHC quadrupole cryostat and suspension are quite large relative to the Tevatron elements they would be replacing.  In particular, maintaining the current Tevatron beam height of 723’ 4.46” at C0 (a planar Tevatron ring), would imply that the LHC quadrupole elements would extend below the floor of the Tevatron.  This was envisioned during the construction of the C0 Experimental Area with the addition of lower elevation trenches specifically for the installation of LHC triplet quadrupoles.  However, John Johnstone’s Plan #2 also requires LHC quadrupoles back in the unmodified Tevatron tunnel at locations B47, B48, C12, and C13.


Modifying the Tevatron tunnel to allow room for the full size LHC quadrupoles at Q4 and Q5 will require major construction.  Due to the minimal design of the existing hoop and slab construction, it appears unlikely that structural modifications can be safely accomplished internally and removal/replacement of hoop sections would require cut and cover methods with substantial accelerator down-times for just this construction modification phase.  Jeff Sims, Conceptual Design Study for Civil Construction for LHC Quads in the Tevatron, August 8, 2002, estimated this construction to cost ~$ 2.3 M (not including Fermilab overhead) and require an unacceptably long 1.5 year down time, neither of which estimates include the removal and replacement of beamline components and utilities in the tunnel.
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iii.  Reduced Quadrupole Cold Mass Design


Sasha Zlobin and Vadim Kashikhin have proposed a smaller overall diameter variation of the LHC quadrupole, which could operate at 170 Tesla/meter at 4.5o K.  see V.V. Kashikhin and A.V. Zlobin, Optimization of the HGQ Iron Yoke for Operation at 4.5o K, TD-02-026, June 28, 2002.   
     www-ap.fnal.gov/~peterg/btev/zlobin_quad.doc

This would use the same cold mass (coils plus collars) as the LHC quadrupoles.  Since the operating gradient (170 T/m) would be less than that specified for the LHC (205 T/m), the cold iron flux return and the overall cryostat could be reduced in size, 267 mm o.d. and 45.72 cm square, respectively, to match the same overall transverse size of the currently installed low-beta quads at CDF/D0.  This quadrupole would fit within the confines of the Tevatron tunnel without modification (see illustration).
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iv.  Decision on reduced diameter LHC Quadrupoles


Although implementing a new quadupole design might incur some risk, it was deemed by the Technical Division (13june02) that since the collared coil, the most complicated and critical component, would be identical to that of the LHC quad, and that the iron flux return yoke could be adequately modeled, and even quench-performance tested using an LHC test prototype collared coil, and since the cryostat would have to be re-designed for Tevatron cryogenics as compared to the LHC superfluid He, the risk and additional R&D would be minimal.  Therefore, it was decided that a reduced diameter LHC quad approach would be superior from an overall cost and scheduling viewpoint.


The cost impact of these proposed reduced diameter quadrupoles was not readily evident.  Neither was there consideration of using the reduced diameter approach for only Q4 and Q5, or to extend it to Q1, Q2, and Q3 (and QTT), as well.

v.  Cryostats for LHC-style quads for C0 – Tom Nicol – 31july02

New quadrupole cryostats for the C0 interaction region (IR) triplets will be modeled after their LHC IR counterparts, but with a reduced diameter to fit into the existing Tevatron tunnel without extensive rework of the tunnel floor.  The C0 quads will have an outside diameter of 18 inches.  The LHC quad cryostats have an outside diameter of 36 inches.  Figure 1 shows a cross section of the proposed C0 quadrupole cryostat design.  The cold mass is supported in a G-11 spider like the LHC cold mass.  There is a single 80 K shield and insulation system as well as the necessary cryogenic piping.  Unlike those in LHC that operate in superfluid helium at 1.8 K, the C0 quads operate at 4.5 K in counterflow heat exchange with two-phase helium.  The design proposed here uses a two-phase annular shell surrounding the coldmass assembly.  Two-phase liquid enters the feed end of the magnet and fills the annulus through a series of penetrations in the outer shell.  This system is similar to that used in the low-beta quadrupoles at B0 and D0, but an attempt is made here to better distribute the two-phase bath around the cold mass.  Figure 4 shows a close-up of the proposed two-phase distribution system.  There are four lengths of triplet assemblies ranging from 2.44 to 5.48 meter-long slots, however the cross section and assembly procedure will be identical for each variation.  Figures 2 and 3 show the complete magnet assembly for Q2F, the longest overall device.

(Peter H. Garbincius adds, 6jan03:) Although this modified cryostat design can serve perfectly well for the stand-alone triplet quadrupoles Q1-Q2-Q3, it does not match the Tevatron magnet cryogenic interconnect convention which would be needed for the Q4 and Q5 installations which are interspersed with Tevatron magnets.  The large pipe at the mid-plane for single phase Helium and power bus can be positioned to match.  The two-phase Helium supply port at the top would need an adapter to meet with the corresponding Tevatron pipe, which is located approximately 45 degrees below the mid-plane.
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Figure 1.  Cryostat cross section
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     Figure 2.   Q2F complete magnet assembly
[image: image8.png]



Figure 3.  Q2F complete magnet assembly – close-up
[image: image9.png]



Figure 4.  Cold mass section showing two-phase annular shell and distribution system
h.  Fabrication of LHC-style Quadrupoles – Costs and Timescales


Jim Kerby of Fermilab’s Technical Division has estimated the costs and timescale to produce and test the required 14 LHC quads (including 50% spares) and 6 strong trims or tune matching quads (no spares, rely on existing CDF/D0 spares).    

www-ap.fnal.gov/~peterg/btev/kerby_8aug01.xls

The total cost estimate (not including contingency or Fermilab overheads) is estimated in FY01 funding to be $ 5.2 M for Materials and Services and $ 5.1 M for labor.  

The total design, procurement, assembly, and testing would extend into a 5th fiscal year.  This time duration is based on three important assumptions: a.  that there is no delay between the completion of the LHC quads for CERN and the beginning of assembly of the quads for C0 to prevent loss of experienced workers;  b.  commitment of funding for the long-term procurement of superconducing cable and collar stainless steel immediately upon inception of the project (~$ 1 M);  and c. design of the cryogenic interfaces and the special test stand for LHC quadrupoles operating at 4.5o K also begin immediately.

There likely will be competition with CERN LHC vendors for availability of superconducting cable.

Given this 4+ year timescale, it is virtually impossible, even given an immediate approval and unrestricted funding, to have these fabricated components ready for installation to coincide with a Summer 2005 shutdown for CDF/D0 upgrades.

i.  Other Cost Estimates for Plan #2 (August 2002)


It is to be noted (Arkadiy Klebaner, January 2, 2003) that the Tevatron cryogenics plant has sufficient capacity to cover the added heat loads due to the additional components for Plan #2.  These estimates do not include contingency, G&A, or escalation.

Cryogenics


$    667 K – Mechanical and Electrical Contractors





$    578 K – M&S: bypasses, power lead cans





$    300 K – Fermilab Manpower

Power Installation

$ 1,655 K – PS, AC dist, bus, filters, regulators






$    131 K – Substation, panel boards, breakers, feeds





$      81 K – quench protection system costs





$    711 K – Fermilab manpower & EDIA

Mechanical (only estimated Plan #1 – use previous Summer, 2000 estimate for Plan #2.)

j.  Risks for Plan #2


The Fermilab Technical Division has a successful LHC Quadrupole Magnet fabrication program.  To first order, no new challenges are anticipated in this similar fabrication for C0.  The cryostats and cryogenic operation must be modified (simplified) to match the 4.5o K systems of the Tevatron.  The reduced diameter LHC-style quadruples must be developed for, at least Q4 and Q5, but since the cold mass is identical, this poses minimal risk.

Since the cold masses would likely be procured externally to Fermilab, the 40 T/m trim or tune matching quadrupoles could be a little more problematic.  The Fermilab Technical Division could, but has chosen not to, resurrect the prior production of these TSM/TSN series of strong corrector spools (a.k.a. Bartelson quads).


The more problematic issue is the schedule of producing these new IR components.  Plan #2 makes most sense if the IR could be installed before the CDF and/or D-Zero program(s) terminate after LHC turn-on.  However, with the push to accumulate as much luminosity for CDF/D0 before then, it does not seem likely that CDF/D0 would have their data taking interrupted for a shutdown for installation for BTeV, unless it could overlap with the shutdown for the CDF/D0 Run II upgrades.

6.  Other Tasks needed to be done for BTeV

In addition to providing a low-β insertion for BTeV, either by Plan #1 or by Plan #2, other related tasks must also be accomplished to provide a base for mounting an experiment at C0.  Although the construction of the experimental hall and assembly building was accomplished during 1997-1999, the C0 Assembly Building is merely a shell, with a crane, but with the bare minimal utilities.  Before an experiment is mounted there, the following features must be supplied:  power feeder duct from B4 area, pad with substation transformers, switchgear and internal power distribution, addition of second (and possibly third) story in half of building, elevator, toilet, counting room(s) with computer floor, fire detection, clean fire suppressant, air chillers, heat exchangers, air handlers, HVAC, lighting, smoke detection, sprinklers, sidewalks, parking lot, road repair, etc.  During 2002, as part of a Utilities Improvement Project (UIP) for a utilities corridor linking CDF and D0, valved stubs for fire protection water supply, domestic water, sanitary sewer, and natural gas lines were brought adjacent to the C0 Assembly Building.  These need to be hooked into the building. 

These outfitting requirements, plans, and preliminary cost estimates were described in Peter H. Garbincius, Cost Estimates for Consideration of Future Construction Activities at C0, April 29, 1999, and were estimated to total ~ $ 4.4 M in FY99 costs, part of which have already been accomplished under the Utilities Corridor project in 2002.  Discounting the elements covered by the Utilities Corridor project and escalating, this C0 AB Outfitting is estimated at $ 4.143 M in FY03 funds.




www-ap.fnal.gov/~peterg/btev/c0ab_outfitting.doc

and
www-ap.fnal.gov/~peterg/btev/c0ab_outfitting.xls

In order to begin installation, component testing, and commissioning, BTeV has expressed their desire to reconfigure C0 from the fixed-target abort to the nominal straight section and to install the SM3 analysis dipole, the short B2 compensating dipoles, and the muon toroid during the shutdown for the CDF/D0 silicon vertex detector upgrades (planned for April – September 2005).   The costs for the abort => straight section change were estimated as $ 1.545 M, escalated to FY03 funding (Peter H. Garbincius at Fermilab PAC, June, 2000).  It is likely that this scope of this reconfiguration work could be accomplished during this ~ 5 month shutdown.

At least the completion of the electrical power installation would be needed for testing the SM3 dipole at C0 Assembly Building before committing to this early installation phase.  This would use about $ 0.6 M of the $ 4.4 M FY99 estimate above.  (The magnet cooling water would be supplied from the old Main Ring LCW system.)  The staging of the completion of testing of SM3 and the rest of the needed C0 AB outfitting construction will require careful planning and coordination. 

7.  Cost Estimates (in FY03 funding) & Tevatron Shutdown Timescales





www-ap.fnal.gov/~peterg/btev/estimates_plan1_plan2.xls

$  4.143 M – C0 Assembly Building Outfitting (discounting UIP project)



no shutdown impact on collider operations for CDF/D0

$  2.267 M – Implement Normal Straight Section at C0



BTeV can test/commission in fixed target mode with wire target




simultaneously with CDF/D0 data taking?



can “test/commission” at collision luminosities of ~1029 - 1030 ,




but only exclusively of CDF/D0 data taking



could be done in >2-month collider shutdown, e.g. Run II upgrades,




plus minor commissioning
$  3.483 M – Plan #1 – Reuse CDF or D0 Quadrupoles and ES Separators,



after either CDF or D0 completes data taking



can attain ~ 32% of CDF/D0 luminosity



can “test/commission” at collision luminosities of ~1029 - 1030 ,




but only exclusively of CDF/D0 data taking 



no estimate of collider shutdown at this time, probably > 5 months,




plus major commissioning period
$ 30.469 M – Plan #2 – Build New Quadrupoles and ES Separators



can attain ~ 70% of CDF/D0 luminosity



can interleave BTeV and CDF/D0 data running



can “test/commission” at 14-24% of CDF/D0 luminosity,




simultaneously with CDF/D0 data running



previous 5 month shutdown estimate seems low, 

long fabrication lead time, difficult to schedule around CDF/D0,




plus very major commissioning period required
Plan #1 Total FY03 Est. = $ 9.9 M

Plan #2 Total FY03 Est. = $ 36.9 M


***  don’t forget cost escalation to whatever schedule model you choose 
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longitudinal stress management
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